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Abstract 

 
Arabic Sign Language (ArSL) is used by individuals who are hard of hearing or deaf in Arab 
countries, as well as others around the world who use it for religious purposes. for the need for 
automated systems to facilitate the learning and communication of ArSL is therefore 
significant. Such systems would allow people to learn Arabic Sign Language and use it to 
communicate among themselves and with the surrounding community. This paper presents the 
development of an automatic recognition system capable of accurately identifying Arabic 
signs through hand gestures. In this paper, two Residual Network (ResNet) Configurations, 
Version 1 (V1) and Version 2 (V2), are proposed and detailed. The proposed ResNet V1 
achieved an average accuracy of 98.83%, while ResNet V2 achieved an average accuracy of 
98.84%. The results described in this paper far exceed those reported in the extant literature. 
The high accuracy of the proposed system shows the potential for integrating the system with 
education tools and assistive technologies for people with special needs.  
 
Keywords: Arabic Sign Language, Deep Neural Networks, ResNet, CNN, Automatic 
Recognition, Hearing Impaired. 
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1. Introduction 

Language is a medium through which we communicate meaning and establish relationships 
[1]. Spoken language involves two interconnected processes unique to the human species: 
speech perception and speech production [2]. Interconnectivity can be disrupted by hearing 
loss. According to the World Health Organization, 5.3% of the world's population suffers from 
disabling hearing loss, which is defined as a loss greater than 40 dB in adults' better hearing 
ear and greater than 30 dB in children's better hearing ear [3-4]. If the hearing loss is severe 
(70-90 dB), the listener cannot hear speech sounds and almost no other sound, whereas if the 
loss is profound (91+ dB), no sound at all is perceived [5]. As an audiological phenomenon, 
deafness, which may be present from birth or acquired, is generally defined [6-8] as a person's 
inability to understand speech using sound alone (with or without hearing aids or other devices 
that can serve as amplifiers). It results in the person’s inability to use hearing as the primary 
channel for receiving speech.  

Hearing and deaf persons encounter a challenging communication barrier when attempting 
to interact with each other. Fortunately, human communication does not wholly rely on a 
single modality. Thus, alternative solutions to medical interventions [9] entail changing the 
channel upon which speech is perceived, such as switching from an auditory to a primarily 
visual mode. Visual means of perception include sign language, lip-reading, speech-reading, 
and reading and writing.  

Within the ecosystem of the interchangeable roles of talker and receiver, sign language can 
be defined as a manual communication system comprised of unique signs that are articulated 
by the talker/signer to convey information and are to be apprehended by the receiver to be 
adequately processed. Because signs are produced by someone whose intent is to communicate 
meaning, they can be classified as symbols [10] that rely on two general systems of manual 
communication: (a) A sign language that consists of a set of manual configurations and 
gestures corresponding to content and function words. Like spoken languages, sign languages 
have their own combinatorial rules (grammar) and suffer from comparable national and 
regional variations (i.e., diglossia) [11]. (b) A finger spelling or manual alphabet, whereby the 
words of a language, such as Arabic, are spelled out manually. It consists of configurations of 
the human hand that correspond to letters of the alphabet. In everyday life, the utility of finger-
spelling emerges in situations in which the word that the talker intends to communicate and 
the receiver wants to understand is not included in the manual vocabulary of either party (e.g., 
a novel word or a proper noun). Alternatively, it refers to situations in which the word is known, 
but noise or ambiguity in the human interaction requires further clarification of the intended 
meaning. Ambiguity may reach uncertainty and even utter confusion when the two interacting 
parties rely on different sign languages to communicate (American Sign Language, ASL, and 
Arabic Sign Language, ArSL), each unknown or little known to the other party. In the latter 
case, reliable cross-language translation is necessary for the intended meaning to be accurately 
conveyed to the receiver.  

Interestingly, medical assessments and interventions are concerned primarily with the 
properties of the physical loss, such as its origin, degree, type, onset, and structural pathology, 
and much less with the communicative challenges it brings about and their implications (e.g., 
dependency, likely disruption of social relationships, etc.). Yet, the implications of deafness 
for the person who is experiencing it are noticeable [12]. It is important to note here that 
congenital deafness, through the early auditory deprivation that it produces, poses severe 
challenges to the intellectual, behavioral, cognitive, and social development of children. The 
onset of deafness is a relevant factor in shaping the severity of the quality-of-life outcomes of 
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hearing loss. The effects of congenital deafness and deafness acquired in early childhood are 
very similar. Still, they differ markedly from those resulting from deafness acquired in late 
childhood or adulthood (e.g., occupational deafness and elderly deafness) [13]. For instance, 
the language deprivation of early-onset deafness can limit children's acquisition of social 
knowledge, thereby leading, among many of its potential outcomes, to social isolation, low 
self-esteem, and parental stress [14]. Deafness acquired in adulthood has different quality-of-
life outcomes because everyday communication breaks down after a spoken language has 
already been learned and has been put to full use for quite some time. Compared with early-
onset deaf persons, individuals suffering from late-onset deafness tend to be reluctant to 
change their usual means of communication, finding hearing loss an insurmountable obstacle. 
As such, they are more likely to experience embarrassment, loss of confidence, social isolation, 
and depression [15].  

Although the experience of alienation from the larger hearing community may be felt, being 
deaf does not entail a view of oneself as handicapped or disabled. Instead, one is likely to see 
oneself as a member of the deaf community, a group of individuals who share, to some extent, 
a common language, life experiences, and a sense of cultural identity. Communication barriers 
exist not only for hearing and deaf individuals who are attempting to interact with each other 
but also for deaf individuals using different manual languages. Whether obstacles are 
conceptualized as hindrances or challenges that demand a problem-solving attitude has serious 
consequences on the lives of all parties involved. Not surprisingly, the concept of 
empowerment [12,16] has emerged as a useful tool for ameliorating views of communication 
challenges and for supporting a healthy problem-solving approach to the demands posed by 
social interactions in everyday life. The concept, rooted in the notion of complementarity, 
which promotes respect and acceptance of people as equals no matter their differences, 
comprises the dimensions of power-inside (e.g., acceptance and confidence in oneself), power-
for (e.g., control over one's decision-making), and power-with (e.g., recognition of common 
goals and solidarity with members of one's community and of other communities).  

Within the notion of each type of empowerment lies the recognition of the importance of 
technological devices that enrich communication channels in sensory modalities other than 
hearing. The issue that remains at the forefront of research in artificial intelligence and a matter 
of contention is the degree of accuracy of online translations of manual signs into their spoken 
or written intended counterparts or of translations in the opposite direction. In the real world, 
spontaneous and informal communications are much more likely to be affected by noise and 
ambiguity than in the rarified laboratory where intelligent human-computer interaction (HCI) 
models are devised and tested.  

The goal of the research presented herein is to describe a bilingual alphabetical sign 
recognition system to aid communication (a) between deaf individuals who speak ArSL and 
wish to learn ASL (and vice versa) or (b) between deaf individuals who speak either of these 
languages and their hearing counterparts. The system may further aid ArSL or ASL users when 
words are unfamiliar, unknown, or merely ambiguous due to noise in the communication 
channel. The proposed system relies on the Arabic sign alphabet. It is recognized that the 
accurate identification of the constituents of meaningful utterances is important to learners 
who wish to gather mastery in a given language and, more broadly, to users who need to 
resolve ambiguities. In fact, due to the pervasive "diglossia" that characterizes different 
manifestations of ArSL, it is argued that an automated translation system between the Arabic 
alphabet and the English alphabet can be a useful tool for overcoming instances of 
miscommunication attributable to local variations in whole word signing.  

The choice of the Arabic language, a Semitic tongue, is based on the fact that it is the 
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habitual communication mode of approximately 260 million people who possess it as their 
first language [17]. Although Modern Standard Arabic (MSA) is the official language of Arab 
governments, widely used in formal education practices, Arab print, and broadcast media [18], 
it coexists with many national and regional dialects or vernaculars, likely to be as prevalent as 
MSA in particular local communities.  

Although the estimated prevalence of the English language is much broader, the use of 
Arabic can be considered, at present, not only widespread but also growing [19]. Although the 
size of the deaf community in the Middle East is largely unknown, statistics involving specific 
countries suggest non-negligible numbers of members. ArSL may be the official sign language 
in Middle Eastern countries, but diglossia remains rampant. Thus, the proposed system is 
expected to have practical utility for a large array of constituencies whose needs cannot be left 
unanswered. In a globalized world, the physical distance between/among people can decrease 
only if improved communication is secured. Below we briefly review the findings of the extant 
literature on automated recognition systems whose goal is to serve the particular 
communication needs of the deaf community. The bilingual recognition system we propose is 
situated within the extant literature, demonstrating its potential utility. 
The main contribution of this study is the development of an accurate ArSL recognition system 
using two novel revised versions of Residual Networks (ResNet V1 and ResNet V2). The 
results indicated higher ArSL recognition accuracy compared with the values reported in the 
extant literature. Furthermore, the study introduces an optimized network depth for ResNet 
models tailored to the specific challenges of recognizing ArSL, which is an issue that has 
received limited attention in prior research. 
The remainder of this paper is organized as follows: Section 2 provides a comprehensive 
review of the existing literature, highlighting the current challenges and approaches. Section 
3 introduces the Convolutional Neural Network (CNN)-based recognition approach, detailing 
the architecture and components of the ResNet models used in this study. Section 4 describes 
the methodology, including the dataset, preprocessing steps, and the specific configurations of 
the ResNet models (V1 and V2). Section 5 presents the experimental results and discusses the 
performance of the proposed models compared to existing methods. Finally, Section 6 
concludes the paper by summarizing the key findings and suggesting directions for future 
research. 

2. Literature Review 
Sign recognition can be realized using a sensor-based approach or an image-based approach 
[20]. In a sensor-based approach, the signer is required to wear a glove when making gestures 
to convey information. Multiple sensors read the hand gestures made. Evidence exists that 
sensor-based systems can be reliable and reasonably accurate [21]. However, they are often 
judged to be burdensome, intrusive, and unnatural by the user as he/she is required to wear a 
glove loaded with cables, sensors, and other technical materials. They also tend to be more 
expensive as they rely on the integration of software and hardware solutions. On the other 
hand, image-based systems overcome the burden of the signer's wearing any kind of gloves 
by using image processing techniques to recognize signs. In image-based systems, the 
extraction of particular features to be used by a learning algorithm for classification may be 
determined by the developer. Alternatively, features may be extracted in an automated manner 
from the input image through a series of algorithms. In the latter, also called a deep learning 
approach, the automated extraction of features is hierarchical. The features that are selected 
are those that most effectively define the input image. 
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Compared with research focusing on sign languages, research specifically devoted to 
automated recognition systems for ArSL (including finger-spelling and sign language of 
utterances) is of more recent development and thus less complete. Predictably, the preferable 
procedural approach is still a matter of debate. Feature extraction approaches have been said 
to lead to high classification accuracy rates if carefully engineered [22]. However, in some 
studies, deep learning approaches have been reported to yield better accuracy [23], whereas in 
other studies, the accuracy of feature extraction approaches and that of deep learning 
algorithms do not seem to be notably different [20].  

In the research summarized below, the methodologies and findings of a selected collection 
of key studies on image-based recognition of Arabic alphabet signs are reviewed to situate our 
work in the proper niche of the extant literature. Although the sampled studies adopt the image-
based approach for fingerspelling, whereby the signer executes the sign of each letter 
separately, they differ in a variety of ways, including the datasets, techniques, and algorithms 
modeling the proposed applications. Yet, the goal is the same. Namely, the development and 
assessment of procedural and computational solutions aimed at finding the optimal system for 
accurately recognizing hand configurations, including position, orientation, and conceivably 
movements. Regardless of the assortment of modes of operation, test findings are consistently 
encouraging, yielding high recognition rates across the board. For instance, Elsayed and Fathy 
used a deep Convolutional Network (CNN) approach for feature extraction and recognition of 
ArSL [24]. They combined the power of Web semantics with deep CNNs. Their method 
achieved 88.87% accuracy on the ArSL dataset. Similarly, Saleh and Issa used deep CNNs to 
enhance the recognition accuracy of 32 ArSL gestures [25]. They chose pre-trained VGG-16 
and ResNet-152 models and then fine-tuned these models by retraining them after adding 
additional layers. The fine-tuned ResNet model achieved the highest accuracy of 99%. 
Nurnoby and colleagues also used pre-trained CNN models on a huge dataset and fine-tuned 
them on an ArSL dataset [26]. Their aim was to improve recognition accuracy when the signs 
have complex backgrounds. Their approach achieved 94.33% accuracy on an ArSL dataset. 
Taken together, the studies reviewed here lead to the conclusion that the CNN-based 
recognition approach is particularly advantageous. Of course, innovative solutions that 
improve over existing ones remain to be sought. 

3. Convolutional Neural Network-based Recognition 
A convolutional neural network (CNN) is a class of deep neural networks that are commonly 
used for image classification. The input data for a CNN are images 𝑥𝑥1 ,𝑥𝑥2,𝑥𝑥3, … , 𝑥𝑥𝑛𝑛, which 
are fed into a convolutional layer. Image 𝑥𝑥𝑛𝑛 can be formally described as 𝑀𝑀 ×  𝑀𝑀 ×  𝐶𝐶 , 
where 𝑀𝑀 refers to the height and width of the image. Thus, 𝑀𝑀 ×  𝑀𝑀 is the number of pixels or 
the resolution of an image.  𝐶𝐶 is the number of channels in the image. The number of channels 
varies depending on the image type. For greyscale images 𝐶𝐶 = 1, whereas, for colored images 
(RGB) 𝐶𝐶 = 3.  Generally, a CNN architecture consists of convolutional layers, pooling 
(subsampling) layers, and fully connected layers [27].  

A convolutional layer consists of a set of learnable filters or kernels that extract different 
feature maps, which are later used during the classification phase. Each kernel has the 
dimensions of 𝑁𝑁 ×𝑁𝑁 × 𝑅𝑅, where 𝑁𝑁 ×𝑁𝑁 is the height and width of the kernel, and 𝑅𝑅 refers to 
the number of channels, which is the same as or less than the channels 𝐶𝐶 in the convolved 
images [27]. In a convolutional layer, each filter (kernel) can extract specific features by 
convolving the input image, thereby, producing 𝑘𝑘 feature maps of the size 𝑀𝑀 −𝑁𝑁 + 1, as 
shown in Fig. 1. Each feature map is then down-sampled (pooled) using mean or max pooling 
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over 𝑞𝑞 ×  𝑞𝑞, where 𝑞𝑞 is the number of strides, which typically ranges between 2 to 5 for large 
inputs, as shown in Fig. 2. Finally, succeeding all convolutional and pooling is a number of 
fully connected layers.  

 
Fig. 1. Mapping of the convolutional kernel filter to the input Image 

 

 
Fig. 2. Sample of the max pooled layer mapping to the feature map 

 
Convolutional Layers act as feature extractors that unearth prominent features, such as 

edges, corners, and endpoints, from input images to compute pre-nonlinearity input for some 
units. Consider a convolutional layer 𝑙𝑙  that receives an input image of size  𝑀𝑀 × 𝑀𝑀  and 
convolves it with a set of filters 𝑘𝑘 with 𝑁𝑁 × 𝑁𝑁  dimensions. It produces 𝑘𝑘-feature maps with 
an output of size (𝑀𝑀 −𝑁𝑁 + 1) × (𝑀𝑀−𝑁𝑁 + 1), illustrating a single convolutional layer that 
produces 𝑘𝑘-feature maps. Furthermore, extracted feature maps from layer 𝑙𝑙 may be passed to 
other convolutional layers to extract higher-level features from the input image. An activation 
function is applied following each convolutional layer. 

Pooling Layers or subsampling layers may follow each convolutional layer in a CNN. 
Pooling layers down-sample each convolutional layer output, thereby reducing its spatial 
height and weight dimension. The main purpose of this process is to reduce the parameters 
learned by the network, thus cutting the computations performed as well as lowering the 
resolution of the images. Namely, the desired outcome is to reduce the precision of the 
translation effect and generalize the feature maps (1, 5). There are several methods to perform 
pooling, such as max pooling and average pooling. Nonetheless, pooling in general works by 
dividing the resultant feature map from convolutional layers into several regions and 
subsampling each region individually.  

Fully connected Layers are used for the output features after several convolutional and 
pooling layers. The primary function of this process is to take all units (i.e., neurons) in the 
previous layer (pooling, convolutional, or fully connected) and connect them to every single 
neuron in the next layer. A fully connected layer is used to classify the high-level features 
produced by the convolutional and pooling layers. 
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4. Methodology 
This paper illustrates experiments conducted using our own ArSL dataset (ArSL2018) [28]. 
This dataset is available to other researchers to check the performance of newly proposed 
classification algorithms and methodologies. We have previously applied CNN and Random 
Forest (using geometric features) to the dataset. CNN models use a common activation 
function, Rectified Linear Units (ReLU), which returns the result value of the convolutional 
layer if it is positive. Otherwise, it returns zero. ReLU is used to increase the non-linear 
properties of the network's decision function without affecting the convolutional layer. In this 
paper, we are applying two versions of residual networks (ResNets) with proposed optimized 
network depths. The details of the dataset and proposed ResNet versions along with relevant 
background are discussed in the following subsections. 

4.1 Dataset 
The ArSL2018 is a comprehensive, fully labeled ArSL images dataset that was developed at 
Prince Mohammad Bin Fahd University (PMU). After the items of the ArSL2018 dataset were 
collected, labeled, and systematized, they were made publicly available [28]. Thus, the dataset 
is now accessible to researchers to benefit communicative exchanges involving deaf and hard-
of-hearing individuals. To our knowledge, the ArSL2018 dataset is unique because it is the 
first comprehensive dataset of ArSL. As such, it is particularly suited to test the accuracy of 
classification and recognition of various applications as well as to develop prototypes useful 
to the deaf community.  

The ArSL2018 dataset is composed of 54049 images, each with 48 x 48 dimensions. Fig. 
3 displays sample images of the ArSL alphabet with labels and numbers for the available 
images. The dataset can be used ‘as-is’ and may be augmented with additional variants from 
a second version of the dataset. Limitations of the current ArSL2018 dataset include the 
following issues: 1) the number of lighting and noise variations of the current sample is narrow, 
and 2) a limited number of participants provided the samples (n = 40). The developers are in 
the process of addressing these limitations, which are viewed as minor, in the next realization 
of the dataset. 
 

 
Fig. 3. Visualization of the Arabic Alphabet of the ArSL 
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4.2 Preprocessing 
The ArSL dataset was generated locally at PMU with the help of volunteers of different ages.  
The distance between the camera and the volunteers was approximately one meter. In the 
images, light intensity, background, and camera angle varied. The dataset was preprocessed 
using Matlab software to make it more appropriate for image classification using machine 
learning approaches. Images were converted to grayscale since color information is not useful 
for sign recognition. All images were then resized to a fixed dimension of 64 × 64. Features 
were intended to be extracted from these preprocessed fixed-dimensional images. Additional 
preprocessing techniques, such as normalization and contrast adjustment, were applied to 
enhance the dataset's robustness.  
 

4.3 Classification using Enhanced Residual Neural Networks (ResNets) 
CNN can assimilate different image features and classifiers in an end-to-end system with 
minimal preprocessing.  These characteristics have had a great impact on image processing 
research.  Deep CNN (DCNN) with several additional layers (i.e., more network depth) can 
help extract better features. Nonetheless, deep networks are affected by degradation issues 
once they reach a convergence point. It was noted that the accuracy of deep networks gets 
saturated and quickly degrades as the number of layers is increased [29]. The degradation 
cannot be attributed to the overfitting of models, as the training accuracy also degrades. The 
problem of training deep networks has been addressed by residual blocks being added to the 
network [29-30]. 

In our research, a Residual Neural Network (ResNet) was used because it is a different 
class of artificial neural networks (ANN) that utilizes special additional connections called 
skip connections. These connections directly join one layer's output with the following layer's 
output. Empirical research suggests that shortcut connections can produce a smoother 
optimization landscape, and gradient decays sub-linearly instead of exponentially as in 
standard ANNs. Thus, shortcut connections relieve the vanishing gradient descent problem. 
Further benefits of shortcut connections are evidenced in [30]. 

The residual function (Ƒ) for a simple block of ResNet shown in Fig. 4 is given by Ƒ =
𝑊𝑊2𝐴𝐴(𝑊𝑊1𝑥𝑥). Here, A is the activation function (such as ReLU), and x is the input to the layers.  
The output (y) of the block is Ƒ(x) + Ƥ(x). It can be generalized as in (1). 

𝑦𝑦 = Ƒ(𝑥𝑥, {𝑊𝑊𝑖𝑖}) + 𝑥𝑥  (1) 

In case the dimensions of Ƒ and x are not the same, a linear projection of skip connections 
with 𝑊𝑊𝑠𝑠 can be used to eliminate the dimensions’ mismatch.  The resulting output block can 
now be expressed as in (2). 

𝑦𝑦 = Ƒ(𝑥𝑥, {𝑊𝑊𝑖𝑖}) + 𝑊𝑊𝑠𝑠𝑥𝑥 (2) 

The residual function 𝐹𝐹(𝑥𝑥, {𝑊𝑊𝑖𝑖}) is the mapping that will be learned, and it represents 
several convolutional layers. 
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Fig. 4. Residual Network Block Structure 

 
ArSL classification is performed using a modified residual neural network model with 

varying input parameters and a varying set of layers. Fig. 5 and Fig. 6 show the two modified 
ResNet models. The shortcut identity connections are integrated within every block of the 
3 × 3 layers in ResNet model 1. As indicated in the figures, identity mapping is utilized for 
all the shortcut connections. In cases where the output and the input dimensions are different, 
a projection shortcut (using a 1 × 1  convolution layer) is used. Batch normalization and 
nonlinear activation are used for the shortcut connection to avoid degradation and vanishing 
gradient problems. The residual block in (3) controls the depth of the convolution layers in the 
ResNet model 1.  

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ_𝑉𝑉1 = 𝑁𝑁 ∗ 6 + 2 (3) 

 

The number of residual blocks is designated by N, e.g., N=4 for ResNet 26. In the model, j is 
the number of loops (1: N), and i is the number of stages in the model (both shown in Fig. 5). 

Bottleneck connections with filter size are calculated based on the increase of the block 
size in shortcut connections by multiplying Block size by 9 as presented in Fig. 6. 
Convolutional layers of size 1 × 1, 3 × 3, and 1 × 1, are the three-layer present in the residual 
function block. The input dimensions are increased and decreased using the 1 × 1  layers. The 
smaller dimensions face a bottleneck from the 3 × 3 layer. The residual block in (4) controls 
the depth of the convolution layers in the ResNet model 2 
 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ_𝑉𝑉2 = 𝑁𝑁 ∗ 9 + 2 (4) 
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Fig. 5. The architecture of the ResNet model 1 Fig. 6. The architecture of the ResNet model 2 

5. Results and Discussions 
The proposed approaches were implemented in Python programming language using 
TensorFlow libraries.  The Python programs were executed on a six-core 3.70GHz CPU with 
32 GB RAM and Nvidia GeForce GTX-1080 GPU with 2560 CUDA cores. The input for the 
proposed models was a pre-processed dataset, which was split into train and test sets with an 
80-20 ratio. The training set was further split into two parts with an 80-20 ratio. In it, 20% of 
the training set was used for validation.  

The experiments were performed on the described dataset using the ResNet V1 and ResNet 
V2 with various proposed depths, various parameters, and varying blocks. As detailed in Table 
2, varying the blocks from 1 to 3, and then to 5 resulted in a depth of 6, 20, and 32 for ResNet 
V1, respectively. Also shown in Table 2 is that varying the blocks from 1 to 3, and then to 5, 
resulted in depths of 11, 29, and 47 for ResNet V2, respectively.  To elaborate, the depths of 
the two versions of ResNet (V1 and V2) were selected based on empirical testing. Initially, 
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various depths were tested, ranging from shallow networks to more complex architectures, to 
identify the optimal balance between model performance and computational efficiency. 

Fig. 7 shows the results of the training loss of the different ResNet depths for both V1 and 
V2.  The curves shown in the figure are all converging close to zero, thereby showing that all 
models were learning well. To verify whether they were not overfitting and whether 
generalization was a viable outcome, validation loss was also calculated and plotted. 

Fig. 8 shows the validation loss which was calculated exactly in the same way the training 
loss was calculated except that it was used to update the weights, whereas training loss was 
not used to update the weights. If the results obtained in Fig. 7 and Fig. 8 are compared, it can 
be observed that the training loss and the validation loss were stabilized after epoch 80, and 
they reached almost the same value. This outcome underscores that the model had a nearly 
perfect fitting, neither overfitting nor underfitting. Thus, the model demonstrated excellent 
generalization capabilities in predicting and classifying new data. 
 

   
Fig. 7. Comparison of training loss           Fig. 8. Comparison of validation loss 

 
 

Fig. 9 plots the training accuracy of both versions of the ResNet architectures proposed in 
this research. It is important to note that the training accuracy for both ResNet V1 and V2 with 
various depths reached a stable saturated state, thereby ensuring a good training accuracy as 
well as indicating that the model could generalize and classify new data well.  

Fig. 10 shows the validation accuracy for the proposed ResNet Versions V1 and V2 with 
different depths. If the validation obtained in Fig. 10 is compared with the training obtained 
in Fig. 9, it can be seen that both the validation and training had reached almost similar values. 
Namely, the gap between training and validation was minimal, thereby illustrating a good fit. 
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Fig. 9. Comparison of training accuracy                    Fig. 10. Comparison of validation accuracy 

 
Table 1 summarizes the comparison of the results obtained by the two proposed ResNet 

Versions V1 and V2 with different epochs, blocks, depths, and parameters. The V1 had depths 
of 6, 20, and 32, whereas V2 had depths of 11, 29, and 47. As explained earlier, depths cannot 
be the same because the equation for depth is different between ResNet versions (#blocks × 6 
+ 2 for V1 and #block × 9 + 2 for V2). As illustrated in Table 1, the best accuracy for ResNet 
V1 was 99.83%, which was achieved at depth 20 with 100 Epochs. The corresponding 
validation was 99.18% with a training loss and validation loss of 0.081 and 0.113, respectively. 
The best training accuracy for ResNet V2 was 99.84%, which was achieved at depth 29 with 
100 epochs. The corresponding validation accuracy was 99.33% with training loss and 
validation loss of 0.094 and 0.12, respectively.  One important point that can be observed here 
is that there is not much difference between the accuracy values of ResNet V1 and V2. Namely, 
for this dataset, the additional complexity of ResNet V2 was not beneficial to its performance. 
Similarly, increasing the number of blocks from 3 to 5 decreased the performance of both 
ResNet versions.  

Experiments were also performed using the feature-based method where the feature 
engineering process consisted of manually extracting the features from the images that would 
produce the best results. Informed by the literature related to ArSL alphabet recognition, in 
this research, more consideration was given to local structural features rather than global 
structural features. For ArSL classification, around 40 geometric features were selected from 
the pre-processed ArSL images. Some of these features included (a) the area and the total 
circumference of images based on the total white pixels; (b) the maximum/minimum height 
and width of consecutive connected white pixels; (c) the maximum/minimum vertical and 
horizontal starting and ending locations for both axes; (d) the proportion of white pixels in the 
upper and bottom halves of images; and (e) centroids, the number of edges, and the roundness 
of ArSL images.  

The precision and recall metrics were also calculated taking the configuration of the ResNet 
V1 and V2 that produced the best test accuracy shown in Table 2. A 99.64% precision score 
and a 98.88% recall score were achieved by ResNet V1 at a depth of 20 and with 100 epochs. 
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A 99.95% precision score and 99.33% recall score were achieved by ResNet V2 at a depth of 
29 and with 100 epochs. Overall, the results obtained in this work outperform the outcomes 
reported in the extant literature. 
 
Table 1. Comparison of ResNet V1 and V2 train/validation accuracies and loss with different epochs, 

and network depths 
ResNet 
Version 

ResNet 
Blocks 

Network 
Depth 

Total 
Parameters Epochs Train 

Accuracy 
Validation 
Accuracy 

Training 
Loss 

Validation 
Loss 

V1 1 1x6+2=8 80,096 

25 95.20% 84.16% 0.247 0.567 
50 96.98% 89.12% 0.168 0.403 
75 97.81% 90.62% 0.133 0.353 
100 99.21% 98.11% 0.084 0.121 

V1 3 3x6+2=20 275,872 

25 97.88% 93.24% 0.195 0.338 
50 98.53% 89.38% 0.149 0.469 
75 98.91% 96.14% 0.124 0.222 
100 99.83% 99.18% 0.081 0.113 

V1 5 5x6+2=32 471,648 

25 97.74% 90.92% 0.236 0.454 
50 98.53% 93.95% 0.171 0.309 
75 98.69% 95.81% 0.147 0.258 
100 99.80% 99.16% 0.091 0.118 

V2 1 1x9+2=11 304,832 

25 97.39% 88.24% 0.229 0.515 
50 98.42% 92.40% 0.159 0.353 
75 98.66% 94.87% 0.134 0.256 
100 99.79% 98.98% 0.083 0.112 

V2 3 3x9+2=29 854,656 

25 97.94% 94.28% 0.297 0.427 
50 98.44% 94.56% 0.205 0.339 
75 98.72% 90.97% 0.161 0.429 
100 99.84% 99.33% 0.094 0.120 

V2 5 5x9+2=47 1,404,480 

25 98.00% 93.41% 0.328 0.458 
50 98.19% 97.06% 0.222 0.275 
75 98.70% 93.22% 0.168 0.353 
100 99.83% 99.32% 0.092 0.114 

 
The results of the present research support the use of CNNs for the recognition of Arabic 

Hand Sign Language. Two Residual Network configurations were put forth, labeled Version 
1 and Version 2, and described thoroughly. The use of ResNet V1 and ResNet V2 for the 
recognition of ArSL achieved a test accuracy of 99.83% and 99.84%, respectively. 
Additionally, various metrics were presented to show that the proposed models neither overfit 
nor underfit and that they generalize well when the task is to predict the classification of new 
data.  Comparisons of the results obtained in this paper with the results reported in the extant 
literature show that the proposed models outperform and produce better results than those 
obtained by earlier models (see Table 2). 
 
Table 2. Comparison of the test accuracy of the proposed models with that of other models using the 

same dataset 
Proposed Method Accuracy Precision Recall 

ResNet V1 – Depth 20 (proposed) 99.80% 99.64% 98.88% 
ResNet V2 - Depth 29 (proposed) 99.83% 99.95% 99.21% 
Geometric Features + RF (proposed) 92.15% 96.24% 96.92% 
Semantic Deep Learning (2020) [24] 88.87% NA NA 
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CNN - VGG16 (2020) [25] 89.89% NA NA 
ResNet152 (2020) [26] 99% NA NA 
CNN Model 1 (2020) [27] 95.90% NA NA 
CNN Model 2 (2020) [27] 97.60% NA NA 
Vision Transformers based Transfer 
Learning (2023) [31] 98% NA NA 

modified inception V3 (2023) [32] 97.4% NA NA 
Vision Transformer [33] 99.3% NA NA 

6. Conclusion 
Systems that automatically recognize ArSL are necessary for developing state-of-the-art 
systems that can assist individuals who are hearing impaired or individuals who work and 
communicate with those who are hearing impaired. Our work, which combines the 
contributions of a multidisciplinary team of scientists, aims to develop an automatic 
recognition system for ArSL with high accuracy, using convolutional neural networks, such 
as Residual Networks. In this paper, two Residual Network Versions V1 and V2 were 
proposed, each with a detailed configuration. Experiments using our ArSL dataset were 
performed. An accuracy of 99.83% and 98.84% was achieved for ResNet V1 and ResNet V2, 
respectively. Interestingly, the selected models were shown to be neither overfitting nor 
underfitting, thereby indicating that they generalized well to new data.  Further work in this 
field will include expanding our research to include sign language from a variety of languages, 
especially languages that have been neglected by other researchers.  Also, future work will 
include the use of Deep Learning Networks for the development of various systems to assist 
individuals with disabilities, such as those who are visually impaired. Future research could 
focus on several key areas to build upon our findings. Enhancing the model to address any 
remaining challenges, such as misclassifications in similar hand gestures, could further 
improve its robustness. Additionally, expanding the dataset to include more diverse signers 
and different dialects would enhance the model's generalizability. Finally, integrating our 
system into practical applications, such as real-time translation tools or educational platforms, 
represents a promising direction for future work. 
 
In summary, this study presents a novel approach to Arabic Sign Language recognition using 
optimized ResNet architectures. Our findings demonstrate significant improvements in 
recognition accuracy compared to existing methods, highlighting the potential of deep learning 
models in this domain. 
The broader implications of our work extend beyond the specific case of Arabic Sign 
Language. By advancing the capabilities of sign language recognition systems, our research 
contributes to the development of more inclusive technologies that can bridge communication 
gaps for the deaf community. This work also sets the stage for further exploration of deep 
learning applications in other specialized language and gesture recognition tasks. 
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